R20

Code No: R20A0001 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech I Semester Regular Examinations, July 2021

English

	(Com	imol	n to	AL	_)		
Roll No								

Time: 3 hours

Max. Marks: 70

Answer Any **Five** Questions

All Questions carries equal marks.

- 1. "The Road Not Taken" is considered one of the finest poems of Robert Frost. Write a detailed summary of the poem and the implicit message it provides. [14M]
- 2. a) What are the principles of writing a paragraph? [7M]b) Write a short descriptive paragraph on your favourite holiday destination. [7M]
- 3. a. Abraham Lincoln's letter to his son's teacher is a reflection of his deep insights into the process and the purpose of education. Justify in the light of your understanding. [7M]
 - b. Discuss the structure of the essay, introduction, body and conclusion, with relavant examples.

[7M]

- 4 a) What are the simple rules to be followed for conversion of sentences from direct to indirect speech. [7M]
 b) Complete the second sentence in the following pairs with the antonyms of the word highlighted in the first sentenc. [7M]
 - the first sentenc.i. We were excited about going to the concert.
 - She was _____ because there were many grammar exercises.
 - ii. She is **beautiful** and wants to be a model. A witch is normally very _____.
 - iii. The party next door was **noisy**. The mountains are very _____ when it snows.
 - iv. There was only enough space for one car on the **narrow** road. The main avenue of the city was very _____.
 - v. I didn't feel a thing. It was **painless**. Having a tooth removed can be _____.
 - vi. The lights didn't work, so it was very dark. The sun was out in the middle of the day so it was very _____.
 vii Imported technology is expensive.
 - vii. Imported technology is **expensive**. Native technology is _____.

5. Discuss the simple guidelines for converting sentences from active to passive voice. Convert the following active voice sentences into passive. [14M]

- i. Rama rescued all the birds.
- ii. Only three students handed in the assignments.
- iii. Jaya crashed into the white car.
- iv. Pranay learned the poem by heart.
- v. Raman has left behind the book.
- vi. The technician has not fixed the mobile phone.
- vii. All my cousins played chess.
- 6. What is the significance of JK Rowling's "Harvard Address"? What are some important take aways for you from it? [14M]
- 7 a) Complete the following sentences using appropriate articles wherever necessay. [7M]

1. I am university student.

a an the

2. She goes to the temple in mornings.

a the No article

3. . Kiran is best student in the class.

a the No article

4. This book has won Booker prize.

a the No article

5. Naren is honest person.

a an the

6. I am fond of classical music.

a the No article

7. Gold is precious metal.

a an the

b) What is difference between a verb and a phrasal verb? Disuss with the help of some sample phrsal verbs. [7M]

- 8. Use the following pairs of commonly confused words in your sentences. [14M] i. Cite-Site ii. Formally-Formerly iii. Lightening-Lightning iv. Eminent-Imminent
 - v. Stationary-Stationery vi. Advice-Advise vii. Complement-Compliment

R20 Code No: R20A0021 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Regular Examinations, July 2021 **Mathematics-I** (Common to ALL) **Roll No Time: 3 hours** Max. Marks: 70 Answer Any **Five** Questions All Questions carries equal marks. *** [14M] Define rank of a matrix, Reduce the matrix $A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}$ to normal form 1 and hence determine its rank. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -2 & 2 \end{bmatrix}$ and find the **[14M]** 2 inverse of A. Find the minimum value of $x^2 + y^2 + z^2$ given that ax + by + cz = p. 3 [14M] Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ where $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z. [14M] 4 A body kept in air with temperature $25^{\circ}c$ cools from $140^{\circ}c$ to $80^{\circ}c$ in 20min. 5 [14M] Find when the body cools down to $35^{\circ}c$ also find what will the temperature of the body after 40 miutes from the original. 6 A bacteria culture, growing exponentially increases from 100 to 400 grams in 10 [14M] hours. How much bacteria was present after 3 hours? 7 Solve $(D^2 - 5D + 6)v = xe^{3x}$. [14M] (a) Find $L \left\{ e^{4t} \sin 2t \cos t \right\}$. 8 [7M] (b) Find $L\{3\cos 4(t-2)u(t-2)\}$ [7M] *******

Code No: **R20A0501**

R20

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Regular Examinations, July 2021 Programming for Problem Solving

			(Com	imoi	n to	ALL)							
		Roll No												
Time 3	hours								Mov	Mo	rlza	70		
Time: 5	nours		\ nou	ior A	ny E	livo	Quanti	one	wiax	. wia	rks:	/0		
		A 11		et ion	any r	riag	Questi	uns norke						
		All	Que	suon	.5 Cai **	**	equal	naiks						
1	a) Di	ctorially represent	and	ovnl	ain th	he he	ncio etr	loture	of '	~ ,				[8 M]
I	a = 1 b) D_{i}	evelop a 'C' pro	oran	o to	fin/	d th	e laro	est o	f thr	\sim n	umh	ere ile	sina	[6M]
	condi	itional statement.	Grun	1 10	1111	u th	e luig	051 0			unio	C 15 U 1	,5	
	• • • • • • •													
2	a) W	rite a program to fi	ind s	um o	of the	e ind	ividua	l digit	s of a	give	n nu	mber.		[5M]
	b) De	liberate about the f	ollo	wing	oper	rator	rs in C	langu	age w	ith e	xamj	ple.		
	i. l	Bitwise operators												[3 M]
	ii.	Increment and dec	reme	ent o	perat	ors								[3 M]
	iii.	. Logical operators												[3 M]
2	a) Er	unlain dealanation a	nd :	nitio	lizati		fIDa							[7]]
3	$\begin{array}{c} a \\ b \\ W \end{array}$	vision declaration a	ina i Join	nitia.	11Zali	on o noin	1 I-D a tor vor	intay.	laclar	ad ar	nd in	itioliza	be	[/N]] [7M]
	0) ۷	hat is pointer? Exp	nam	now	ule	pom			icciai	eu ai	iu iii	manzo	5 u .	[/ייין
4	a) El	lucidate different C	ateg	ories	ofu	ser o	lefined	func	ions.					[7 M]
	b) Cl	lassify the types of	of st	orag	e cla	isses	they	do C	supp	orts	WI	nat is	the	[7M]
	ne	ecessity of each?		-			-							
_														
5	a) Ill	ustrate the actual	argu	umer	nts a	nd f	ormal	argur	nent	in fu	inctio	ons. C	bive	[7M]
	contra	asts lies between the	hese	argu	men	ts. I	dentify	the r	iles to	o cal	I a fi	unction	n in	
	a mai	n function.	aron	a fin	d the	aro	atast c	omme	n div	isor	(GC)	D) of	two	[7]/[]
	numb	presi using a recursi	ve fu	incti	u inc	git		JIIIII	ui ui v	1501		D) 01	two	
	nume	is using a recursi		ine en	5115.									
6	a) De	escribe about dyna	mic	mem	ory 1	nana	agemei	nt fun	ctions					[7M]
	b) In	plement the call	by	valu	e an	d c	all by	refer	ence	tech	nique	es in	ʻC'	[7M]
	progr	amming language.												
_	、 .											•		
7	a) W	rite a 'C' program	to de		nstra	te pa	ssing s	tructu	res th	roug	h po	inters.		[7 M]
	D) C	udents in a tost	10 II	na ti	ie av	erag	e mark	s odta	unea	by a	ciass	5 01 50		
	su	uuents mätest.												
8	Build	a 'C' program to in	mple	emen	t the	stac	k and 1	berfor	m pus	sh an	d por	p		[14M]
-	operat	tion Also write a fi	uncti	ion t	o die	nlav	the co	ntent	nf eta	ck af	tere	ach		

operation. Also write a function to display the content of stack after each operation.

3(a) Determine the power dissipation in 4Ω resistor of the circuit shown in the fig. using [7M] mesh analysis.

(b) Determine the Thevenin's equivalent circuit across 'AB' for the following network [7M] 10Ω 5Ω

4(a) State super position theorem with an example.

[7M]

(b) Using star- delta transformation, determine the current drawn by the source in the [7M] circuit shown in the fig.

5(a) Determine the average value and rms value of the waveform shown in the fig. [7M]

- (b) An inductive coil having negligible resistance and 0.1H inductance is connected [7M] across an AC supply of 220V, 50Hz. Calculate (i) Inductive reactance (ii) RMS value of Current (iii) Power factor (v) write down the equations for voltage and current.
- **6(a)** Illustrate the crest factor and form factor of a sine-wave. **[7M]**
- (b) An AC circuit consists of a pure resistance of 10Ω and is connected across an AC [7M] supply of 230V, 50Hz. Calculate (i) Current (ii) Power consumed (iii) Power factor (iv) write down the equations for voltage and current.
- 7(a) Describe the Faraday's law of electro-magnetic induction principle. [7M]
- (b) Discuss the elementary concept of a generator.
- 8(a) Illustrate the operation of Miniature Circuit Breaker (MCB) [7M]
- (b) Describe various types of cables used in the electrical systems. [7M]

[7M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech I Semester Regular Examinations, July 2021

Computer Aided Engineering Graphics

			Comput	ci Aluc		SE)	ing	Gra	pm	13				
			Roll No											
Time	• 3 h	ours							/lov	Mai	·lze• '	70		
1 11110	. J II	Juis		A	Δ			1	ал.	11141	N3.	/0		
			A 1	Answer .	Any r	ive Que	stion	S mlza						
			Al	Questio		nes equa	u ma	rks.						
0.1	Α	Divide	a 100 mm long str	aight line	into e	eleven ea	ual n	arts						[7M]
2.1	B	A plot	of ground is in the	ne shape	ofar	ectangle	110r	$n \times 5$	0m. 1	Inscr	ibe a	n ellip	tical	
		lawn in	it.	T -		0	-	_				ľ		[7 M]
Q.2	Α	Constru	ict a regular hexa	gon of 3	0 mm	radius b	y usi	ing i	nscri	be a	nd ci	rcumsc	cribe	[7]]
		method	•											
	B	Divide	a circle of 50 mm	diameter	twelv	e equal p	arts.							[7M]
Q.3		Draw t	he projections of	the follow	ving p	points on	a co	mmo	on re	ferer	ice li	ne kee	ping	
		the dist	ance between thei	r projecto	rs 30	mm apar	t							
		A.	Point A is 10 mm	below th	e H.P.	. and 30 i	nm ii	n fro	nt of	the V	√.P.			
		B.	Point B is in the I	H.P. and a	50 mm	behind t	he V	.P.	•					F1 4N 41
		C.	Point C is 30 mm	in iront (of the	v.P. and	111 the	e H.F	i. deba	VD				[14]/1]
		D. E	Point D is 40 mm	below th	е п.р. о ц р	and $30 r$	nn b	enno ohin/	d the	V.P.				
		E. F	Point E is 20 mm	I P and 3	0 mm	below th	e H 1	P	u uie	v.r.				
		G I.	Point H is in both	HP and '	VP		IC 11.1							
0.4		A line	AB of 100 mm let	ngth is in	clined	at 30° to	HP	and 4	45^{0} to	o VP	. The	e point	A is	F4 43 43
£.		15 mm	above HP and 20	nm in fro	nt of '	VP. Draw	the	proje	ection	ns of	the li	ine.		[14M]
Q.5		Draw th	he projections of	a circle o	f 50m	m diame	ter re	esting	g in t	he H	I.P or	n a poir	nt A	
		on the	circumference, its	plane in	clined	$1 \text{ at } 45^0 \text{ f}$	to the	e HP	and	the	top v	view of	f the	[14M]
		diamete	er AB making 30 ⁰	angle wit	h the	V.P.								
Q.6	Α	Draw t	he projections of	a hexago	onal p	yramid, l	base	30 n	nm s	ide a	nd a	xis 60	mm	
		long, h	aving its base on	the HP. a	nd on	e of the e	edges	of t	he ba	ase in	ncline	ed at 45	5° to	[7M]
	ъ	the V.P	· · · · ·		1			0	1	1			• •	
	В	Draw t	he projections of	a pentago	onal p	yramid a	x1s 5	0 mm	n lor	1g, b	ase 4	0 mm	side	[7M]
07		naving	base on the groun	u and one	or ed	ges of ba	se ind	cine	u at 4	+3´ [() V.P		night.	
2.1		75 mm	when it is resting	on HD on	gonal	pyraiiiia at an edge		lue 0 he hr	n Das	nara	111111 + امال	$and ne \alpha VP$	igin	[14M]
0.8		Draw th	e elevation nlan	and side v	view f	or the fol	lowin	ne θέ 1σ Fi	130-18 011re	para	iner t	UVI.		[14M]
ו0			ie eie vation, plan		۲ w ۵۱۰ لار		10 10 11	-6 - 1	Suit					[T-4TAT]

R20

Code No: R20A0302 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Regular Examinations, July 2021 **Computer Aided Engineering Graphics** (CSE-CS, CSE-AI&ML, CSE-DS & CSE-IOT) **Roll No Time: 3 hours** Max. Marks: 70 Answer Any **Five** Questions All Questions carries equal marks. *** Draw a circle of 80 mm diameter and divide six equal parts 1 А [7M] Construct the following regular polygons in circle of 80 mm diameter, using a В [7M] different method in each case. A) pentagon B) Hexagon 2 Draw an ellipse with major axis of an ellipse is 100 mm and minor axis is 70 А [7M] mm long В Draw exterior and interior tangents connecting two circles of radii 20 mm and [7M] 40 mm having their centers 100 mm apart. 3 Draw the projections of the following points on a common reference line [14M] keeping the distance between their projectors 25 mm apart. A. Point A is 20 mm below the H.P. and 40 mm in front of the V.P. B. Point B is in the H.P. and 30 mm behind the V.P. C. Point C is 40 mm in front of the V.P. and in the H.P. D. Point D is 50 mm above the H.P. and 25 mm behind the V.P. E. Point E is 20 mm below the H.P. and 50 mm behind the V.P. F. Point F is 50 mm above the H.P. and 40 mm In front of the V.P. 4 A Straight line AB has its end A at 25 mm above the H.P and 30 mm in front **[14M]** of V.P and other end B is 80mm above the H.P and 60 mm in front of V.P if the end projectors are 60 mm apart. Draw the projections of the line. Determine true length and true inclination with reference planes. 5 A Hexagonal plane of 40 mm side is resting on a side in H.P and its surface [14M] makes an angle of 30° to H.P and perpendicular to V.P. Draw the projections. A pentagonal pyramid having base with 30 mm side and 75 mm long axis, has 6 [14M] edge of its base on the H.P. Its axis is parallel to the V.P. and inclination at 45° to the H.P. Draw its projections. 7 Draw the isometric view of a hexagon of side 30 mm whose surface is parallel А [7M] to the H.P and a side parallel to the V.P Draw the isometric view of a Circle (Isocircle) with a 50mm Diameter on all В [7M] three Principle Planes Draw the (i) Front view (ii) Top View (iii) Side view of the Following [14M] 8 **Isometric Drawings**

Code No: R20A0401 R20 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) IB.Tech I Semester Regular Examinations, July 2021 Analog and Digital Electronics Image: Content of Co

(EEE & ECE)																	
		Rol	l No														
Time:	3 hours]	Max	. Ma	rks:	70			
				Answ	ver A	ny F	'ive (Ques	tions	5							
			All	Ques	stion	s car	ries	equa	l ma	rks.							
						**	**										
1	Describe	the VI c	haracteris	stics	of d	iode	and	thei	r ter	nper	ature	e dep	bend	enc	e with	1 [14M]
	relevant expressions and diagrams																
•	T 11	1 1		1			C D						c				1 43 43
2	Illustrate t	he work	ing and c	harac	eteris	stics	of P.	N JU	nctio	n di	ode	unde	r for	wa	rd blas	\$ L.	14M
	and reven	se bias	with re	levan	t di	agra	ms,	repr	esen	t th	e st	atic	and	dy	namio	2	
	resistance	of the di	ode in th	e cha	racte	eristio	c cur	ve.									
3	Explain w	orking o	of transist	or in	con	nmoi	n bas	se co	onfig	urati	ons	and	draw	v its	s inpu	t [:	14M]
	and output	t characte	eristics, d	erive	the	expr	essic	on fo	r out	put o	curre	nt.					
4	a) De	rive rela	tion betw	een o	α,βα	and γ										ſ	[6M]

- b) Describe the working of PNP transistor [8M]
 5 a) Write the differences between BJT, FET and MOSFET [8M]
 b) Draw and explain structure of n- channel JFET [6M]
 6 a) Draw the Small signal model of JFET [4M]
 - b) Draw and explain the characteristics of n-channel enhancement MOSFET [10M]
- 7a) Convert (1A05.2C4)₁₆ into binary, decimal and octal[6M]
 - b) Simplify using postulates and theorems of Boolean algebra [8M]

i) $(X+Y^1+XY)(X+Y^1)X^1Y$

ii) $(AB+C+D)(C^{1}+D)(C^{1}+D+E)$

- 8 a) Simplify the Boolean equation $F(X,Y,Z,W)=\Sigma m(0,1,4,5,6,13,14,15)$ using [8M] k-map
 - b) Implement the full Subtractor circuit using half subtractor and justify with [6M] Boolean expressions.

Code No: R20A0011 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Regular Examinations, July 2021 **Applied Physics** (EEE & ECE) **Roll No Time: 3 hours** Max. Marks: 70 Answer Any Five Questions All Questions carries equal marks. **** 1 a) Give the construction working and application of He-Ne Lasers. [10M] b) Write any four applications of Lasers. [4M] 2 a) Explaining the terms Acceptance angle and Numerical Aperture, derive [10M] expressions for the same. b) For the light launched from water of refractive index 1.33 into an optical fiber [4M] with refractive indices of core 1.5 and cladding 1.45, determine the acceptance angle and numerical aperture. 3 [10M] a)Explain in detail the deBroglie hypothesis b) Give the first three energy values for a particle (electron) bound in a 1D box of [**4M**] 5nm 4 a) Deduce the Time Independent Schrodinger wave equation. [7M] b) Give the experiment of GP Thompson to prove the existence of matter waves. [7M] 5 a) Discuss the Kronig-Penny model for electron propagating through a periodic [10M] potential and energy band formation. b)Classify metals, semiconductors and insulators [4M] 6 a) Discuss the drawbacks of classical free electron theory and explain how [7M] quantum mechanics is answering the drawbacks. [7M] b)) Derive an expression for the density of states. 7 a) What are Intrinsic and extrinsic semiconductor? [4M] b)Derive an expression for concentration of Conduction band electrons of an [10M] intrinsic semiconductor. 8 [**8M**] a)What is polarizability and derive an expression for the ionic polarizability of a dielectric. b) Differentiate anti ferro and ferrimagnetic materials. [6M]

R20

Code No: **R20A0302**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Regular Examinations, July 2021 Computer Aided Engineering Graphics

(IT)										
Roll No										

Tim	e: 3 hou	rs Max. Marks: 70	
		Answer Any Five Questions	
		All Questions carries equal marks.	
1	a	Draw a straight line CD of 75 mm long line into six numbers of equal	[7M]
		parts.	
	b	Bisect a given 120° angle between two lines.	[7M]
2	а	Construct a Regular hexagon having 40 mm sides, using general method.	[7 M]
	b	Inscribe a regular hexagon about a given circle of radius 20 mm.	[7M]
3		Draw the projections of the following points on a common reference line	[14M]
		keeping the distance between their projectors 30 mm apart.	
		a) Point A is 20 mm below the H.P and 50 mm in front of the V.P	
		b) Point B is in the H.P and 40 mm behind the V.P.	
		c) Point C is 30 mm in front of the V.P and in the H.P	
		d) Point D is 50 mm above the H.P and 30 mm behind the V.P	
		e) Point E is 20 mm below the H.P and 50 mm behind the V.P	
		f) Pont F lies on both the reference planes.	
		g) Point G 30 mm above HP and 20 mm infront of VP	
4	а	A straight line AB 50 mm long makes an angle of 30° to HP. The end A is 12 mm above the HP and 15 mm infront of the VP. Draw the top view and front view of the line AB	[7M]
	b	A line AB 50 mm long makes an angle 45° to the VP. The end A is 15 mm infront of VP and 12 mm above the HP. Draw the top view and front view of the line AB.	[7M]
5	a	A hexagonal lamina of 40 mm side is resting on one of its corner on the HP. Its plane is inclined at an angle of 30° to HP and perpendicular to VP. Draw its projections	[7M]
	b	Draw the projections: Draw the projections of a circular lamina of 50 mm diameter, whose centre is 30 mm from HP and 20 mm infront of VP. The circular lamina is inclined at angle of 30° to HP and perpendicular to VP	[7M]
6		A pentagonal pyramid side of base 25 mm and height 45 mm is resting on one of its triangular face on horizontal plane with its axis parallel to VP Draw its projections	[14M]
7		A Hexagonal pyramid of base side 30 mm and axis 60 mm long is resting on a face on the H.P. with axis parallel to the V.P. Draw its isometric view	[14M]

Draw (i) front view (ii) Top view (iii) Side view of an object shown **[14M]** below.

R20

Code	No: R20A(0013								
Μ	ALLA R	EDDY COL	LEGE O	F ENG	INEE	CRIN	G &	TECH	INOL	OGY
	T 1	(Autonom	ous Institu	ution – U	J GC, G	Govt.	of Ind	lia)	• •	
	1	B.Tech I Sen	iester Re	egular E	l Chor	natio	ns, J	uly 202	21	
		At	Ivanceu r	ME & A	r Unen E)	mstr	y			
		Roll No								
Time:	3 hours		A		0	Μ	ax. Ma	arks: 70)	
		А	Answer A	Any Five as carries ***	equal m	ns narks.				
1	a) What are	Fuel cells? Writ	te the const	ruction a	nd react	ions ir	nvolve	d in the		[7M]
	H ₂ -O ₂ fue b) Explain t	el. the construction	and cell rea	octions of	Lead ac	cid bat	tery.			[7M]
2	a) Derive N	lernst equation si	ingle electro	ode poten	tial. Dis	scuss i	ts appl	ications	5.	[7M]
	b) Define I	Primary battery.	Explain th	ne Lithiui	n ion b	oattery	constr	ruction	and cell	[7]) (1)
	reactions in	n detail.								[/[N 1]
3	a) What is I	Electrochemical	corrosion?	Write the	differen	nt type	es of			[10M]
	Electroch b) Explain s	nemical corrosion	n. r type of Ca	thodic pr	otectior	ı				[4M]
	o) Explain (rype of ea	unoure pr	oreerior	1.				
4	a) How are	e metals protected	d by metall	ic coating	? Expla	in Ga	lvanisi	ng and T	Гinning.	[7M]
	0) Explain I	Philling-Bedworu	i rule? write	te its sign	meance					
5	a) Write sho	ort notes Carbon	reinforced	plastics a	nd Glas	ss rein	forced	plastics	•	[4M]
	b) How are i Ba	the following poly kelite ii P	olymers syn PVC	ithesized'	' Write	their a	applica	tions.		[10M]
	1. Du		v e	111. 1						
6	a)What are polyacety	conducting poly ylene.	mers? Expl	ain the ac	lvantage	es of d	loping	in		[10M]
	b) What are	e Fiber reinforced	d Plastic (F	RP) and v	vrite the	eir imp	ortant	applica	tions.	[4M]
7	a)Discuss S Nanomat	ol-gel and Chem terials.	nical vapour	r depositi	on meth	nod of	prepar	ation of	,	[7M]
	b)Write the materials	applications of	Magneto st	trictive m	aterials	and E	lectro	strictive	:	[7M]
8	a)What is B	Beer -Lambart La	aw? Explain	ı in detail						[7M]
	b) Calculate	e the molar absor	rptivity of a	a 1x 10 ⁻⁴ 1	M soluti	ion, w	hich ha	as an		[7M]
	absorbance	of 0.20, when the	ne path leng	th is 2.5 (cm.					

Code No: R20A0012 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Regular Examinations, July 2021 Engineering Physics

	()	AE (& A	E)					_
Roll No									
					I	Max	. Ma	rks:	70

Time: 3 hours

Answer Any **Five** Questions All Questions carries equal marks.

1	a). What is forced damped harmonic oscillator? Derive an expression for	[10M]
	equation of motion of a forced damped harmonic oscillator.	
	b). Describe energy decay in damped harmonic oscillator?	[4M]
2	a). Derive equations for over, critical and lightly damped harmonic oscillator.	[10M]
	b) What are the characteristics of simple harmonic motion?	[4M]
3	a) Distinguish between Fresnel and Fraunhofer diffraction.	[4M]
	b) Explain Fraunhofer diffraction due to single slit	[10M]
4	a) Derive an expression for interference in thin film by of reflected light.	[10M]
	b). Distinguish between division of wave front of light and division of	[4M]
	amplitude of light.	
5	a) With neat diagram explain Kronig – Penny modal.	[10M]
	b) Draw E – K diagram and explain in detail.	[4M]
6	a) Write a note on Density of states.	[10M]
	b) Describe Bloch's theorem.	[4M]
7	a) Explain classification of dia, para and ferro magnetic materials on the basis	
	of magnetic moment.	[7M]
	b) What is Electronic polarizability? Derive an equation for Electronic	[7M]
	polarizability.	
8	a) With neat diagram explain working principle of He-Ne gas laser.	[10M]
	b) Write a note on Types of Optical fibers.	[4M]

R20